Winter 1977

Atomic Resolution Observations of Heavy Atom Adsorbates on Low Atomic Number Substrates

Mark Utlaut

University of Portland, utlaut@up.edu

M. Isaacson

D. Kopf

J. Langmore

N. W. Parker

Follow this and additional works at: https://pilotscholars.up.edu/phy_facpubs

Part of the Physics Commons

Citation: Pilot Scholars Version (Modified MLA Style)

https://pilotscholars.up.edu/phy_facpubs/62

This Journal Article is brought to you for free and open access by the Physics at Pilot Scholars. It has been accepted for inclusion in Physics Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.
Abstract: Atomic resolution observations of heavy-atom adsorbates on low-atomic-number substrates*

M. Isaacson,† D. Kopf, J. Langmore,‡ N. W. Parker,§ and M. Utlaut

Department of Physics and the Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637

(Received 1 September 1976)

PACS numbers: 82.65.My, 66.30.Jt, 61.16.Di

The feasibility of utilizing a high-resolution scanning transmission electron microscope (STEM)† to study the adsorption and diffusion of heavy atoms on low atomic number substrates is being investigated. It is shown that the study of surface phenomena on an atomic scale may be possible with the STEM.‡ The technique should be complementary to existing methods of studying surfaces at atomic resolution since the STEM is capable of observing substrate-adsorbate systems not easily accessible by other methods.

Two types of measurements which can be performed with existing instrumentation have been demonstrated. They are (1) the measurement of the spacing distribution of adatoms deposited onto substrates, and (2) the measurement of the diffusion of individual adatoms on substrates. Initially, our attention has been concentrated on thin evaporated carbon film substrates and solvent evaporated heavy atom-containing molecules as adsorbates, because of the ease of preparation of such samples. However, one should be able to extend the method to any substrate that can be made of small enough mass thickness and any adsorbate that can be visualized.§

We have (1) found that uranium and silver atoms deposited at low concentrations (from 7 × 10⁻⁴ atoms/Å² to 5 × 10⁻³ atoms/Å²) exhibit preferential spacings with respect to one another (the pair-spacing distribution is peaked), and (2) measured the thermal hopping of uranium and silver atoms on carbon substrates (deposited from dilute solutions of UO₂Cl₂ and AgCN, respectively) at room temperature. For the uranium atom samples, we have observed a tendency for atom pairs to move together as a unit. In addition, we have shown that the effects of electron beam induced motion on the samples observed are (within our experimental error) negligible.

*This work was supported by the U.S. Energy Research and Development Administration. This paper will be published in two parts: Pt. I in Ultramicroscopy 1 (1976) and Pt. II in the Proceedings of the National Academy of Sciences (USA).

†Alfred P. Sloan Research Fellow

‡Present address: Medical Research Council Laboratory for Molecular Biology, Hills Road, Cambridge, England CB2 2QH.

§Hertz Foundation for the Advancement of Applied Science predoctoral fellow.

