Spring 2019

Parabolic Solar Trough

Audrey Beattie
beattiea19@up.edu

Ed Lane
lanee19@up.edu

John E. Pellessier
pellessi19@up.edu

Abbie Simthline
smithlia19@up.edu

Follow this and additional works at: https://pilotscholars.up.edu/egr_project

Part of the Energy Systems Commons

Citation: Pilot Scholars Version (Modified MLA Style)
https://pilotscholars.up.edu/egr_project/18

This Open Access is brought to you for free and open access by the Shiley School of Engineering at Pilot Scholars. It has been accepted for inclusion in Engineering E-Portfolios and Projects by an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.
Parabolic Solar Trough

Audrey Beattie
Ed Lane
John E. Pellessier
Abbie Smithline
What is a Parabolic Solar Trough?

- A type of concentrating solar technology
- Heats fluid by concentrating solar energy at a focal line
- Working fluid in this design is water

Credit: Mark Fedkin [1]
Why are we building one at UP?

- Heated water will be used in an Organic Rankine Cycle (ORC), designed in 2017/18

- Advantages:
 - Easily integrated into the existing ORC system
 - Cost effective for comparable energy gains

Credit: P. Kiameh [2]
Problem Statement

Who
• Shiley mechanical engineering students and professors

What
• Parabolic solar trough module that is segmented for future lab use

Why
• Aid in heating water for the hot side of the Organic Rankine Cycle
Design Criteria

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Weight</th>
<th>Functional Requirement</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (<$2040)</td>
<td>5</td>
<td>Safety for students and faculty</td>
<td>5</td>
</tr>
<tr>
<td>Dimensions (8'X16')</td>
<td>3</td>
<td>Increase water temperature 20°C from inlet to outlet</td>
<td>5</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>3</td>
<td>Straightforward installation and plumbing</td>
<td>4</td>
</tr>
<tr>
<td>Power Source</td>
<td>2</td>
<td>Measure inflow and outflow temperatures without disrupting operation</td>
<td>4</td>
</tr>
<tr>
<td>Weather</td>
<td>1</td>
<td>Stationary water line</td>
<td>3</td>
</tr>
</tbody>
</table>
Development: Overall Design

- 30-inch x 7.5-inch parabola
- 0.02-inch Aluminum sheet metal
- 0.25-inch Aluminum ribs
- 1-inch diameter copper pipe, painted black
- Aluminum support frame
Development: Overall Design

- Parabola shape is a function of the trough's depth \((h) \), width \((a) \), focal length \((f) \), and rim angle \((\emptyset) \). The most efficient rim angle is 90 degrees.

\[
h = \frac{a^2}{16f}
\]

\[
f = \frac{a \sin(0.267)}{\sin(\emptyset)}
\]

All dimensions are in inches
Development: Overall Design

- Solar Tracker System: photo resistors change resistance based off light present
- Trough rotates until sensors have same resistance
 - Parabolic Trough
 - Photo Resistors
 - Sun Blocker
 - Linear Actuator
Modeling and Analyses

Thermodynamic Modeling

- $E = mc\Delta T$
- Trough surface area is the ratio of energy needed to heat the water to the incoming solar energy ($A_{\text{surface}} = \frac{E_{\text{need}}}{E_{\text{solar}}}$)

Heat Transfer Analysis

- Compare circular vs square cylinder to determine shape with least resistance to heat transfer
Modeling: Expected Data

Expected Temperature Change
Surface Area CR = 9.75

- 10 gpm
- 5 gpm
- 1 gpm
- Single Trough

Change in Temperature (°C)

x Distance (ft)
Prototyping: Tracking System

• Uses photo resistors to track the position of the sun
• Rotates the system until both resistors measure same amount of light
Testing: Infrared Imagery
Conclusions: Assessment of Design Criteria

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Weight</th>
<th>Assess</th>
<th>Functional Requirement</th>
<th>Weight</th>
<th>Assess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (<$2040)</td>
<td>5</td>
<td>✓</td>
<td>Safety for students and faculty</td>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>Dimensions (8'X16')</td>
<td>3</td>
<td>✓</td>
<td>Increase water temperature 20°C from inlet to outlet</td>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>3</td>
<td>✓</td>
<td>Straightforward installation and plumbing</td>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td>Power Source</td>
<td>2</td>
<td>✓</td>
<td>Measure inflow and outflow temperatures without disrupting operation</td>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td>Weather</td>
<td>1</td>
<td>✓</td>
<td>Stationary water line</td>
<td>3</td>
<td>✓</td>
</tr>
</tbody>
</table>
Conclusions

Future Design Improvement

• Polish Aluminum, overall improvement of reflectiveness
• Improved tracking system for greater range of motion
• Increase number of troughs

Future Work

• More data collection over the summer
What We Learned

• Deeper understanding of realistic thermal systems and their constraints
• Teamwork, task delegation
• Communication
• Design process
Acknowledgements

• Dr. Dillon: Advising Professor, energy research extraordinaire, #1 Fan
• Jacob Amos: Shop Technician
• Jared Rees: Circuits/Electronics Shop Technician
• Allen Hansen: Safety Advisor
• Shiley School of Engineering, Galarneau Fund
• Becca Baldwin: Industry Advisor
Questions

Audrey Beattie
beattiea19@up.edu

Ed Lane
lanee19@up.edu

John E. Pellessier
pellessi19@up.edu

Abbie Smithline
smithlia19@up.edu
References

NREL Solar Data

- Average solar energy data from National Renewable Energy Lab (NREL) website for Portland, OR in July over one day
- What we can expect energy input to system will look like.
Analysis: Expected Temperature Change for Unconcentrated Pipe

![Graphs showing expected temperature change for unconcentrated pipe with varying flow rates and distance.](image-url)