Date
Fall 2018
Faculty Advisor
Hannah Highlander
Sponsor
University of Portland
College/School
College of Arts & Sciences; Shiley School of Engineering
Department
Department of Mathematics; Department of Biology
Abstract
Infectious diseases pose a serious threat to humans, plants, and animals. Though vaccines can help control outbreaks of infectious diseases, there is typically not enough vaccine available for the entire population. In this case, certain vaccination strategies can be employed to maximize the benefits for the entire population. Using results from graph theory and the simulation tool lONTW (Infections On NeTWorks), we investigated various vaccination strategies on certain types of so-called contact networks that model the patterns of interactions within a population. In particular, we focused on a certain class of contact networks known as small world models, where individuals are randomly connected, i.e., can transmit and/or contract an infectious disease, along paths that are relatively small in relation to the overall population size. These types of networks tend to provide good estimations of the interactions of real populations when the exact contact network is unknown. However, the complexity and stochasticity of such networks create challenges in determining the best vaccination strategy. Here we discuss our preliminary results for vaccination strategies on small world models, including how many vaccines are needed (a notion related to a concept called the herd immunity threshold) and, for a given amount of vaccine, which individuals should be vaccinated in order to prevent major outbreaks.
Subjects
Communicable diseases--Vaccination; Mathematical models; Mathematics in biology
Citation: Pilot Scholars Version (Modified MLA Style)
McClung, Emily; Rivas, Sam; Soriano, Emma; Thomas, Caelan; and Highlander, Hannah, "Vaccination Strategies and Herd Immunity Thresholds in Small World Models" (2018). Mathematics Undergraduate Publications, Presentations and Projects. 2.
https://pilotscholars.up.edu/mth_stupubs/2
Document Type
Student Project
Included in
Biology Commons, Engineering Commons, Mathematics Commons, Medical Biomathematics and Biometrics Commons
Publication Information
A Summer Research Celebration Project
© 2018 The Authors