Author

Heidi Meister

Date of Award

2018

Document Type

Doctoral Dissertation

Degree Name

Education, Ed.D.

Department

Education

First Advisor

Patricia Morrell

LC Subjects

Games in mathematics education; Mathematics--Study and teaching

Abstract

This study examined the impact of digital game-based learning (DGBL) on procedural and conceptual understanding of algebraic expressions and equations and the motivation of students towards classroom mathematics. The mixed-methods sequential explanatory design was used in this study to collect data to determine the effectiveness of DGBL in a 7th grade STEM class. Following a pre-test and pre-motivation survey, students were assigned to either the DGBL group or the non-gaming computer applications as supplemental to mathematics instruction. In order to address both procedural targets and conceptual targets students would be using the technology interventions in addition to traditional math instruction as part of their daily math class, and a problem-based unit taught as part of their STEM class. Following the treatment, a post-test, post-motivation survey, and a conceptual assessment were administered, as well as a digital questionnaire. No significant differences were detected between their understanding of procedural or conceptual problems, nor was there a significant impact to their motivation towards mathematics based on the quantitative data gathered. Students displayed an enthusiastic response to the DGBL environment based on their transcripts from the follow-up questionnaire. The results of the study imply that there is a need for further development of DGBL systems and scaffolded supports to assist students in making connections from the digital environment to classroom mathematics. It further indicates that enjoyment of the DGBL environment does not necessarily transfer to motivation to learn the subject matter in the non-digital environment.

Comments

Copyright for this work is retained by the author.

Share

COinS