Journal Title

Physical Review A

Publication Date

2008

Abstract

We derive and analyze the Born–Markov master equation for a quantum harmonic oscillator interacting with a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as one of the four “canonical” system–environment models for decoherence and dissipation. To investigate the influence of further couplings of the environmental spins to a dissipative bath, we also derive the master equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are experimentally motivated by quantum- electromechanical systems and micron-scale ion traps. Decoherence and dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increasing temperature and goes to zero at zero temperature, but there also exists a temperature-independent momentum-diffusion (heating) rate.

Subjects

Harmonic oscillators; Quantum theory

Publication Information

Copyright 2008 American Physical Society. The original published version of this article may be found at http://dx.doi.org/10.1103/PhysRevA.77.022111.

DOI

10.1103/PhysRevA.77.022111

Peer-Reviewed

Yes

Document Type

Journal Article

Included in

Physics Commons

Share

COinS